Online Learning for Stock Market Investment

Fall 2017, COMS 6998 Final Project

Kevin Wu Gregory Johnsen John Heintschel Sasha Beltinova

Introduction

- Stock markets: a natural candidate for online learning algorithms.
 - Full feedback, immediately observable rewards, sequential structure

• Portfolio allocation problem: Given a set of stocks and an initial endowment of wealth, maximize cumulative rewards over a set time frame.

• Can an algorithm that minimizes hindsight regret for investment portfolios beat naive investment benchmarks in modern financial markets?

Portfolio Allocation: Approaches

- Markowitz (1952): "Modern Portfolio Theory"
 - Mean-variance optimization: parametric approach, need to reliably estimate μ , σ using historical prices
- Cover (1991): Universal Portfolios
 - First online learning approach to the problem
 - Invest uniformly in all constantly rebalanced portfolio strategies
 - Exponential complexity in the number of stocks
- Helmbold et al. (1998): Exponentiated Gradient
 - Linear in the number of stocks
 - Empirically, nearly just as good as Universal Portfolios on small number of stocks

Portfolio Allocation: Online Learning Setup

2.1 Portfolio Allocation Setup

The portfolio allocation problem can be formalized as follows.

- Given a set of K stocks, an agent invests wealth according to the non-negative weight vector $\boldsymbol{w} = (w^1, \dots, w^K)$ where $\sum_{i=1}^K w^i = 1$.
- An agent's total wealth at time t given a set of relative price changes¹ $\boldsymbol{x}_t = (x_t^1, \dots, x_t^K)$ is represented by the dot product $\boldsymbol{w} \cdot \boldsymbol{x}_t$.
- Over a fixed time period T, given a sequence of portfolio allocations $w_1, w_2, \ldots w_T$ and a sequence of relative price changes $x_1, x_2, \ldots x_T$, the final wealth, or the *cumulative reward*, is calculated as:

$$S(\cdot) = \prod_{t=1}^{T} (\boldsymbol{w}_t \cdot \boldsymbol{x}_t)$$

2.2 Constantly Rebalanced Portfolio, Best CRP

A constantly rebalanced portfolio (CRP) is an allocation method in which $w_1 = w_2 = \dots w_T$.² The best Constantly Rebalanced Portfolio, w^* , is defined *in hindsight* by:

$$oldsymbol{w}^* = \operatorname*{argmax}_w S(\cdot) = \operatorname*{argmax}_w \prod_{t=1}^T (oldsymbol{w} \cdot oldsymbol{x}_t)$$

Exponentiated Gradient

• Objective function: Maximize "expected" rewards while maintaining incremental updates to the weight vector *w*

$$\operatorname*{argmax}_{\boldsymbol{w}_{t+1}} \eta \log(\boldsymbol{w}_{t+1} \cdot \boldsymbol{x}_t) - D_{KL}(\boldsymbol{w}_{t+1} || \boldsymbol{w}_t)$$

• Weight update formula:

$$w_{t+1}^{i} = g(\boldsymbol{w}_{t}, \boldsymbol{x}_{t}) = \frac{w_{t}^{i} \exp(\eta x_{t}^{i} / \boldsymbol{w}_{t} \cdot \boldsymbol{x}_{t})}{\sum_{j=1}^{N} w_{t}^{j} \exp(\eta x_{t}^{j} / \boldsymbol{w}_{t} \cdot \boldsymbol{x}_{t})}$$

(1)

• Similarities to Hedge?

Exponentiated Gradient

Algorithm 1: Exponentiated Gradient

Parameter: η Given K stocks and initial wealth S_0 , initialize weight vector $\boldsymbol{w} = (1/K, ...1/K)$. for $t \in \{1, ..., K\}$ do for $i \in \{1, ..., K\}$ do Observe reward x_i^t for stock Update weight $w_i^{t+1} = g(\eta, w_i^t, x_i^t)$. (See Equation 1) end for Update wealth. $S_t = \boldsymbol{w}^t \cdot \boldsymbol{x}^t$. Reallocate wealth according to $\boldsymbol{w_{t+1}}$.

Experiments on U.S. Equities

• Used daily adjusted close prices of current Dow Jones Industrial Average (DJIA) components from 2000 to 2017.

- Benchmarks:
 - Equal-Weighted Buy and Hold
 - Should beat this!
 - Best Stock
 - Best Constant Rebalanced Portfolio (CRP)

Experiments on U.S. Equities

Portfolio Weights: "Winner-Take-All"

 \mathbf{KO}

— JNJ

AXP

CAT

- NKE

— ва

— PFE

— VZ

Portfolio Weights: "Winner-Take-All"

— GS — INTC	— GE — NKE	CVX PFE	— MMM — PG
— AXP	— BA	- VZ	— КО
— САТ — HD	— DD — MRK	— ХОМ	— JNJ

EG: "Sophisticated Experts"

• Same as regular EG, except portfolio is allocated among experts which may choose to either buy the stock or not.

Algorithm 2: Exponentiated Gradient with Sophisticated Experts Parameters: η Given K experts and initial wealth S_0 , initialize weight vector $\boldsymbol{w} = (1/K, ...1/K)$. for $t \in \{1, ..., T\}$ do for $i \in \{1, ..., K\}$ do Observe reward x_i^t for expert. Update weight for expert $w_i^{t+1} = g(\eta, w_i^t, x_i^t)$. (See Equation 1) Expert calls subroutine $EXP(x_i)$ to determine whether to BUY or NOT BUY. end for Update wealth. $S_t = \boldsymbol{w}^t \cdot \boldsymbol{x}^t$. Reallocate wealth according to \boldsymbol{w}_{t+1} . end for

• Full allocation: if an expert decides not to buy, its allocation is redistributed amongst the "buying" experts in that period.

Expert Subroutines: Mean Reversion/Momentum

```
Algorithm 3: Moving Average Expert Subroutine: Mean Reversion
Parameters: n (window size), \tau (moving average threshold)
Initialize expert for a given stock i.
Initialize a time-ordered list of at most n prices for i, x' = \emptyset.
for t \in \{1, ..., T\} do
   if t < n then
     Add x_t^i to list of most recent prices x'.
     return NO BUY
   end if
   Remove x'_{t-n} from list of most recent prices x'.
   Add x_t^i to list of most recent prices x'.
   Estimate the mean \mu, and variance \sigma of last n returns.
   if x_t^i < \mu - \tau * \sigma then
     return BUY
   else
     return NO BUY
   end if
end for
```

Final Result (2017)

All stocks

Without AAPL, UNH

Final Result (1998)

Figure 2: Comparison of wealths achieved by the best constant-rebalanced portfolio, the $EG(\eta)$ update and the best stock for a portfolio consisting of IBM and Coca Cola.

Figure 6: The average annual percent yield of BCRP, the universal portfolio algorithm and the $EG(\eta)$ -update for random subsets of stocks from size 2 to 24.

EG: Then and Now

- EG still "works" just not as well as it did for the original authors in 1998.
- Possible reasons:
 - Economic/historical reasons
 - Structural changes in financial markets
 - Efficient Markets Hypothesis EG getting "priced in" after 1998?

	APY (%)							
	1998 (N=24)	2017 (N=28)	2017 (N=26)*	1998 (N=10)	2017 (N=10)	2017 (N=10)*		
BCRP	~28.5%	26.8%	15.4%	~23%	26.8%	12.1%		
EG	~21%	10.9%	8.6%	~19.5%	13.5%	7.7%		

Additional Considerations

- Portfolio allocation in real life
 - Can only transact in integer number of shares
 - Transaction costs (fees, slippage, etc.)
- Incremental rebalancing
 - Reallocation step in Mean Reversion/Momentum strategies => large portfolio updates
- Potential survivorship bias in selecting current Dow Jones stocks
 - Or "reverse" survivorship bias (e.g. AAPL)
- More data
 - Evaluate algorithms on random subsets from larger set of stocks
 - What about other markets?
- Effect of side information on EG

Concluding Remarks

- We show that an online portfolio selection algorithm that maximizes a regularized cumulative reward function is able to achieve higher overall returns than a naive benchmark on modern-day, large-cap US equity data.
- We compare our results with experiments from the original EG paper and show a decrease in performance using post-2000 large-cap equity data, and observe the impact of outliers and a "winner-take-all" phenomenon.
- We show the potential for extending EG using "sophisticated" experts such as moving average-based indicators.
- We set up a custom simulation environment for running online learning algorithms on financial market data.
- Potential for further work:
 - Theoretical analysis of different sophisticated expert strategies
 - Incorporating side information
 - Shifting regret bounds

Questions