Online Learning for Stock Market Investment

Fall 2017, COMS 6998 Final Project
Kevin Wu
Gregory Johnsen
John Heintschel
Sasha Beltinova

Introduction

- Stock markets: a natural candidate for online learning algorithms.
- Full feedback, immediately observable rewards, sequential structure
- Portfolio allocation problem: Given a set of stocks and an initial endowment of wealth, maximize cumulative rewards over a set time frame.
- Can an algorithm that minimizes hindsight regret for investment portfolios beat naive investment benchmarks in modern financial markets?

Portfolio Allocation: Approaches

- Markowitz (1952): "Modern Portfolio Theory"
- Mean-variance optimization: parametric approach, need to reliably estimate μ, σ using historical prices
- Cover (1991): Universal Portfolios
- First online learning approach to the problem
- Invest uniformly in all constantly rebalanced portfolio strategies
- Exponential complexity in the number of stocks
- Helmbold et al. (1998): Exponentiated Gradient
- Linear in the number of stocks
- Empirically, nearly just as good as Universal Portfolios on small number of stocks

Portfolio Allocation: Online Learning Setup

2.1 Portfolio Allocation Setup

The portfolio allocation problem can be formalized as follows.

- Given a set of K stocks, an agent invests wealth according to the non-negative weight vector $\boldsymbol{w}=\left(w^{1}, \ldots w^{K}\right)$ where $\sum_{i=1}^{K} w^{i}=1$.
- An agent's total wealth at time t given a set of relative price changes ${ }^{1} \boldsymbol{x}_{t}=\left(x_{t}^{1}, \ldots x_{t}^{K}\right)$ is represented by the dot product $\boldsymbol{w} \cdot \boldsymbol{x}_{\boldsymbol{t}}$.
- Over a fixed time period T, given a sequence of portfolio allocations $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots \boldsymbol{w}_{T}$ and a sequence of relative price changes $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots \boldsymbol{x}_{T}$, the final wealth, or the cumulative reward, is calculated as:

$$
S(\cdot)=\prod_{t=1}^{T}\left(\boldsymbol{w}_{t} \cdot \boldsymbol{x}_{t}\right)
$$

2.2 Constantly Rebalanced Portfolio, Best CRP

A constantly rebalanced portfolio (CRP) is an allocation method in which $\boldsymbol{w}_{1}=\boldsymbol{w}_{2}=\ldots \boldsymbol{w}_{T}{ }^{2}$ The best Constantly Rebalanced Portfolio, \boldsymbol{w}^{*}, is defined in hindsight by:

$$
\boldsymbol{w}^{*}=\underset{w}{\operatorname{argmax}} S(\cdot)=\underset{w}{\operatorname{argmax}} \prod_{t=1}^{T}\left(\boldsymbol{w} \cdot \boldsymbol{x}_{t}\right)
$$

Exponentiated Gradient

- Objective function: Maximize "expected" rewards while maintaining incremental updates to the weight vector w

$$
\begin{aligned}
& \arg \operatorname{wox} \eta \log \left(\boldsymbol{w}_{t+1} \cdot \boldsymbol{w}_{t+1}\right)-D_{K L}\left(\boldsymbol{w}_{t+1} \| \boldsymbol{w}_{t}\right) \\
& \left.\boldsymbol{w}_{t+1}\right) \\
& \left.\arg _{t+1}\right)
\end{aligned}
$$

- Weight update formula:

$$
\begin{equation*}
w_{t+1}^{i}=g\left(\boldsymbol{w}_{t}, \boldsymbol{x}_{t}\right)=\frac{w_{t}^{i} \exp \left(\eta x_{t}^{i} / \boldsymbol{w}_{t} \cdot \boldsymbol{x}_{t}\right)}{\sum_{j=1}^{N} w_{t}^{j} \exp \left(\eta x_{t}^{j} / \boldsymbol{w}_{t} \cdot \boldsymbol{x}_{t}\right)} \tag{1}
\end{equation*}
$$

- Similarities to Hedge?

Exponentiated Gradient

```
Algorithm 1: Exponentiated Gradient
    Parameter: }
    Given }K\mathrm{ stocks and initial wealth }\mp@subsup{S}{0}{}\mathrm{ , initialize weight vector }\boldsymbol{w}=(1/K,\ldots1/K)
    for }t\in{1,\ldots,T}\mathrm{ do
        for i\in{1,\ldots,K} do
            Observe reward }\mp@subsup{x}{i}{t}\mathrm{ for stock
            Update weight wit w+1}=g(\eta,\mp@subsup{w}{i}{t},\mp@subsup{x}{i}{t}).(\mathrm{ See Equation 1)
        end for
        Update wealth. }\mp@subsup{S}{t}{}=\mp@subsup{\boldsymbol{w}}{}{\boldsymbol{t}}\cdot\mp@subsup{\boldsymbol{x}}{}{\boldsymbol{t}}
        Reallocate wealth according to }\mp@subsup{\boldsymbol{w}}{\boldsymbol{t+1}}{}\mathrm{ .
    end for
```


Experiments on U.S. Equities

- Used daily adjusted close prices of current Dow Jones Industrial Average (DJIA) components from 2000 to 2017.
- Benchmarks:
- Equal-Weighted Buy and Hold
- Should beat this!
- Best Stock
- Best Constant Rebalanced Portfolio (CRP)

Experiments on U.S. Equities

AAPL JPM
AXP KO
BA MCD
CAT MMM
CSCO MRK
CVX MSFT
DD NKE
DIS PFE
GE PG
GS UNH
HD UTX
IBM VZ
INTC WMT
JNJ XOM

Portfolio Weights: "Winner-Take-All"

-	-	AAPL	-	UNH	-	DD	-
-	XOM						
-	JPM	CSCO	-	HD	MSFT	-	-
-	URX	-	WMT				
-	GS	-	DIS	-	-	IBM	-
-	INTC	-	GE	-	MMM		
-	AXP	-	CVX	-	PKE	-	PFE
-	CAT	-	BA	-	-	KO	
		VZ	-	JNJ			

EG: Learning Rate Selection

- 10 stocks - 5 stocks - all stocks

Portfolio Weights: "Winner-Take-All"

$$
\begin{array}{|llllllll|}
- & \text { JPM } & - & \text { MSFT } & - & \text { UTX } & - & \text { WMT } \\
- & \text { CSCO } & - & \text { DIS } & - & \text { IBM } & - & \text { MCD } \\
- & \text { GS } & - & \text { GE } & - & \text { CVX } & - & \text { MMM } \\
- & \text { INTC } & - & \text { NKE } & - & - & \text { PFE } & - \\
\hline & \text { AXP } & - & \text { PG } \\
- & \text { BA } & - & \text { VZ } & - & \text { KO } \\
- & - & \text { DA } & - & \text { XOM } & - & \text { JNJ } \\
\text { HD } & - & \text { MRK } & & & & \\
\hline
\end{array}
$$

EG: "Sophisticated Experts"

- Same as regular EG, except portfolio is allocated among experts which may choose to either buy the stock or not.

```
Algorithm 2: Exponentiated Gradient with Sophisticated Experts
    Parameters: }
    Given }K\mathrm{ experts and initial wealth }\mp@subsup{S}{0}{}\mathrm{ , initialize weight vector }\boldsymbol{w}=(1/K,\ldots1/K)
    for }t\in{1,\ldots,T} d
        for }i\in{1,\ldots,K} d
            Observe reward }\mp@subsup{x}{i}{t}\mathrm{ for expert.
            Update weight for expert }\mp@subsup{w}{i}{t+1}=g(\eta,\mp@subsup{w}{i}{t},\mp@subsup{x}{i}{t}).(See Equation 1
            Expert calls subroutine EXP(xi) to determine whether to BUY or NOT BUY.
        end for
        Update wealth. St}=\mp@subsup{\boldsymbol{w}}{}{t}\cdot\mp@subsup{\boldsymbol{x}}{}{t
        Reallocate wealth according to }\mp@subsup{\boldsymbol{w}}{\boldsymbol{t+1}}{
    end for
```

- Full allocation: if an expert decides not to buy, its allocation is redistributed amongst the "buying" experts in that period.

Expert Subroutines: Mean Reversion/Momentum

```
Algorithm 3: Moving Average Expert Subroutine: Mean Reversion
    Parameters: }n\mathrm{ (window size), }\tau\mathrm{ (moving average threshold)
    Initialize expert for a given stock i.
    Initialize a time-ordered list of at most n prices for }i,\mp@subsup{\boldsymbol{x}}{}{\prime}=\emptyset\mathrm{ .
    for }t\in{1,\ldots,T}\mathrm{ do
        if }t<n\mathrm{ then
            Add \mp@subsup{x}{t}{i}}\mathrm{ to list of most recent prices }\mp@subsup{\boldsymbol{x}}{}{\prime}\mathrm{ .
            return NO BUY
        end if
        Remove \mp@subsup{x}{t-n}{\prime}}\mathrm{ from list of most recent prices }\mp@subsup{\boldsymbol{x}}{}{\prime}\mathrm{ .
        Add \mp@subsup{x}{t}{i}}\mathrm{ to list of most recent prices }\mp@subsup{\boldsymbol{x}}{}{\prime}\mathrm{ .
        Estimate the mean }\mu\mathrm{ , and variance }\sigma\mathrm{ of last n returns.
        if }\mp@subsup{x}{t}{i}<\mu-\tau*\sigma\mathrm{ then
            return BUY
        else
            return NO BUY
        end if
    end for
```


Final Result (2017)

All stocks

Without AAPL, UNH

Final Result (1998)

Figure 2: Comparison of wealths achieved by the best constant-rebalanced portfolio, the $\operatorname{EG}(\eta)$ update and the best stock for a portfolio consisting of IBM and Coca Cola.

Figure 6: The average annual percent yield of BCRP, the universal portfolio algorithm and the $\mathrm{EG}(\eta)$-update for random subsets of stocks from size 2 to 24 .

EG: Then and Now

- EG still "works" - just not as well as it did for the original authors in 1998.
- Possible reasons:
- Economic/historical reasons
- Structural changes in financial markets
- Efficient Markets Hypothesis - EG getting "priced in" after 1998?

	APY (\%)					
	$1998(N=24)$	$2017(N=28)$	$2017(N=26) *$	$1998(N=10)$	$2017(N=10)$	$2017(N=10) *$
	$\sim 28.5 \%$	26.8%	15.4%	$\sim 23 \%$	26.8%	12.1%
EG	$\sim 21 \%$	10.9%	8.6%	$\sim 19.5 \%$	13.5%	

Additional Considerations

- Portfolio allocation in real life
- Can only transact in integer number of shares
- Transaction costs (fees, slippage, etc.)
- Incremental rebalancing
- Reallocation step in Mean Reversion/Momentum strategies => large portfolio updates
- Potential survivorship bias in selecting current Dow Jones stocks
- Or "reverse" survivorship bias (e.g. AAPL)
- More data
- Evaluate algorithms on random subsets from larger set of stocks
- What about other markets?
- Effect of side information on EG

Concluding Remarks

- We show that an online portfolio selection algorithm that maximizes a regularized cumulative reward function is able to achieve higher overall returns than a naive benchmark on modern-day, large-cap US equity data.
- We compare our results with experiments from the original EG paper and show a decrease in performance using post-2000 large-cap equity data, and observe the impact of outliers and a "winner-take-all" phenomenon.
- We show the potential for extending EG using "sophisticated" experts such as moving average-based indicators.
- We set up a custom simulation environment for running online learning algorithms on financial market data.
- Potential for further work:
- Theoretical analysis of different sophisticated expert strategies
- Incorporating side information
- Shifting regret bounds

Questions

