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1 Introduction

1.1 Problem Space and Suitability of Online Learning

The stock market presents a natural candidate for applications of online learning, given its se-
quential nature and immediate and fully observable rewards. In this context, the algorithm is a
wealth-maximizing agent and the set of action spaces is a set of available stocks to trade.

In class, we discussed Hedge, an online algorithm with experts that minimizes hindsight regret
given fully observable rewards across all actions. While Hedge maintains a probability distribution
over actions that the agent samples from at every round, an investor in the stock market does not
need to be constrained to selecting just one action per time period. Instead, the vector of weights
may be conceived of as an allocation across a portfolio of multiple stocks, and the investor may
simultaneously take many actions in order to realize the weightings implied by the vector.

The foundation for most present-day approaches to portfolio allocation, both in academia and in
industry, can be traced back to Harry Markowitz’s 1952 paper on portfolio selection [6]. Markowitz’s
framework, commonly known as Modern Portfolio Theory, seeks to optimize portfolio returns for
a given level of risk (mean-variance optimization). While these objectives make sense in many
investment contexts, mean-variance optimization is heavily reliant on accurate estimation of its
parameters from historical data.

Online learning methods provide an alternative, non-parametric approach to the portfolio allo-
cation problem. Thomas Cover’s 1991 ”Universal Portfolio” [2] is one of the earliest such model-free
methods, which provably achieves a total return close to that of the best best possible result in
hindsight. However, Cover’s Universal Portfolio algorithm is exponential in the number of assets
and relies on sampling over the set of available assets with large N . Several years later, Helmbold
et al. [4] proposed the Exponentiated Gradient (EG), an alternative method whose complexity
is linear in the number of assets, but with similar empirical results as Cover’s algorithm. More
recently, others such as Das and Banerjee (2011) have expanded on Helmbold’s EG, using it as
a building block in a meta algorithm (MA) and achieving even stronger empirical and theoretical
performance.[3]
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1.2 Our Present Study

Our project offers a novel adaptation of Helmbold’s canonical EG algorithm, which we term EG
with ”sophisticated experts.” In this setting, EG serves as a meta algorithm itself. Rather than
arms corresponding directly with positions in a given stock, each arm corresponds to the outcome
of a common technical trading strategy on a particular stock. In the course of this study, we
also attempt to replicate Helmbold’s original empirical results, but using modern-day financial
data dating back to 2000. We find that for more than 2 or 3 stocks, the EG algorithm fails to
yield as high overall returns relative to various portfolio allocation benchmarks as was shown by
Helmbold. However, we also find that EG with sophisticated experts is able to recover similar levels
of performance, in line with benchmark guarantees. We leave the task of analyzing the theoretical
underpinnings of these findings for a future report.

2 Preliminaries

Before going into the results of our experiment, we first provide some mathematical details on the
portfolio allocation problem in the context of online learning, as well as Helmbold’s EG algorithm,
which is the basis of our research.

2.1 Portfolio Allocation Setup

The portfolio allocation problem can be formalized as follows.

• Given a set of K stocks, an agent invests wealth according to the non-negative weight vector
w = (w1, . . . wK) where

∑K
i=1w

i = 1.

• An agent’s total wealth at time t given a set of relative price changes1 xt = (x1t , . . . x
K
t ) is

represented by the dot product w · xt.

• Over a fixed time period T , given a sequence of portfolio allocations w1,w2, . . .wT and a
sequence of relative price changes x1,x2, . . .xT , the final wealth, or the cumulative reward,
is calculated as:

S(·) =

T∏
t=1

(wt · xt)

2.2 Constantly Rebalanced Portfolio, Best CRP

An important benchmark in the online portfolio allocation literature is the constantly rebalanced
portfolio (CRP)—an allocation method in which w1 = w2 = . . .wT .2 The best Constantly Rebal-
anced Portfolio (BCRP), w∗, is defined in hindsight by:

w∗ = argmax
w

S(·) = argmax
w

T∏
t=1

(w · xt)

1Current day’s price divided by the previous day’s price.
2Note that this algorithm is not the same as a passive ”buy-and-hold” strategy, as maintaining the same w at

each round requires selling the stocks which have outperformed in the previous period and buying those that have
underperformed.
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and serves as an important benchmark of performance throughout the online portfolio allocation
literature. In fact, Cover and Thomas are able to show in 1991 that the BCRP is an optimal
strategy in an i.i.d. market (an assumption which itself is the subject of a good deal of literature).
[1]

2.3 Exponentiated Gradient

At each round, the Exponentiated Gradient (EG) method picks a weight vector that seeks to
maximize the overall reward in the next round while penalizing large updates to w [4], as measured
by the K-L divergence between wt+1 and wt.

argmax
wt+1

η log(wt+1 · xt)−DKL(wt+1||wt)

An approximate solution to the above optimization results in the following weight update formula:

wi
t+1 = g(wt,xt) =

wi
t exp(ηxit/wt · xt)∑N

j=1w
j
t exp(ηxjt/wt · xt)

(1)

2.3.1 Connections to Hedge

The weight update formula in EG provides a multiplicative update procedure that is linear in
the number of arms, similar to Hedge. While Hedge maintains a probability distribution over
actions, EG maintains a weight vector whose components sum to 1. The difference in weight
update procedures between the two algorithms is due to the way actions are taken simultaneously
in the portfolio allocation problem, rather than sampled from a distribution. Finally, EG seeks to
maximize multiplicative rather than additive rewards.

3 Body

3.1 Experimental Setup

Provided with some fixed amount of initial wealth, simulations were run of algorithms which were
able to buy and sell stocks on each trading day from January 1, 2000 to August 31, 2017.3 Each
algorithm was only able to trade with current stocks from the Dow Jones Industrial Average. 4 In
all of our experiments, we considered a maximum of 28 different possible stocks in which to invest
5.

To facilitate the testing of different portfolio allocation algorithms in a consistent and user-
friendly way, we set up a custom simulation environment in Python to run our trials.6 This

3Historical end-of-day stock price data was obtained from https://www.quandl.com/.
4Current DJIA components: AAPL, AXP, BA, CAT, CSCO, CVX, DD, DIS, GE, GS, HD, IBM, INTC, JNJ,

JPM, KO, MCD, MMM, MRK, MSFT, NKE, PFE, PG, UNH, UTX, V, VZ, WMT, XOM.
5Although DJIA is comprised of 30 stocks, the historical data for two stocks, V (Visa) and TRV (Travelers

Companies Inc), had significant amount of missing data and these stocks were thus excluded from the experiment.
6https://github.com/kevjwu/coms6998-project
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environment is initialized with a given algorithm, or Agent, and a set of Experts corresponding
to the different possible stocks. Different Agents may use different strategies to determine which
Expert’s recommendations should be followed, and different Experts may use different criterion for
making a recommendation. At each round of the simulation, each Expert updates its state with
the observed rewards of its corresponding stock; these rewards accrue to the Agent’s portfolio; the
Agent calculates an update to its weight vector based on the observed rewards of its Experts; and
the position is reallocated before moving on to the next round.

3.2 Algorithms Used

3.2.1 Agents

We begin with the original EG algorithm (Algorithm 1), which for 2 or 3 stocks, is shown to have low
hindsight regret compared to the BCRP[4]. Wealth is allocated between stocks in proportionality to
the weights. In our simulation environment, we call such an expert—one that always recommends
to buy a given stock—a “Dummy” expert.

Algorithm 1: Exponentiated Gradient

Parameter: η
Given K stocks and initial wealth S0, initialize weight vector w = (1/K, ...1/K).
for t ∈ {1, . . . , T} do
for i ∈ {1, . . . ,K} do

Observe reward xti for stock
Update weight wt+1

i = g(η, wt
i , x

t
i). (See Equation 1)

end for
Update wealth. St = wt · xt.
Reallocate wealth according to wt+1.

end for

3.2.2 Experts

Our extension of Helmbold’s EG algorithm is to allocate to Experts which have discretion over
recommending a given stock (Algorithm 2), rather than allocating directly to the stocks. Each
expert is actually a subroutine which maintains some state based on its available historical price
data.

In this experiment, we tried two different moving-average based ”sophisticated experts”, which
we call Mean Reversion and Momentum (Algorithm 3). These experts are based on generic technical
trading strategies, and both seek to capitalize on price trends in the market, but using opposite
approaches.

1. The Momentum expert seeks to find stocks that are performing well, in the hopes that they
will continue to perform well. The expert buys when the recent price surpasses some threshold
multiple above a moving average.

2. The Mean Reversion expert seeks to find stocks which aren’t performing well, in the hopes
that in the long run they will make up their losses and revert toward a mean price level. The
expert buys when the recent price falls below some threshold multiple of its moving average.
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Since these expert subroutines may either choose to buy or not to buy at any given time period,
any ”unallocated” money is reinvested among experts that are buying in the current time period,
proportional to their weights.

Algorithm 2: Exponentiated Gradient with Sophisticated Experts

Parameters: η
Given K experts and initial wealth S0, initialize weight vector w = (1/K, ...1/K).
for t ∈ {1, . . . , T} do
for i ∈ {1, . . . ,K} do

Observe reward xti for expert.
Update weight for expert wt+1

i = g(η, wt
i , x

t
i). (See Equation 1)

Expert calls subroutine EXP (xi) to determine whether to BUY or NOT BUY.
end for
Update wealth. St = wt · xt.
Reallocate wealth according to wt+1.

end for

Algorithm 3: Moving Average Expert Subroutine: Mean Reversion

Parameters: n (window size), τ (moving average threshold)
Initialize expert for a given stock i.
Initialize a time-ordered list of at most n prices for i, x′ = ∅.
for t ∈ {1, . . . , T} do
if t < n then

Add xit to list of most recent prices x′.
return NO BUY

end if
Remove x′t−n from list of most recent prices x′.
Add xit to list of most recent prices x′.
Estimate the mean µ, and variance σ of last n returns.
if xit < µ− τ ∗ σ then
return BUY

else
return NO BUY

end if
end for

3.2.3 Benchmarks

Finally, we ran three common benchmark agents in our simulation framework in order to evaluate
the performance of EG and its variations against performance guarantees in the online portfolio
allocation literature.[5]

1. Buy and Hold: An agent assigns weights equally to each stock. This is a naive benchmark
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in the sense that comparing our algorithms with ”buy and hold” will tell us whether a given
strategy is better than random portfolio allocation with no learning.

2. Best Fixed Stock: This is a special case of buy and hold, in which all the weight is assigned
to the single best stock in hindsight.

3. Best Constantly Rebalanced Portfolio (BCRP): This agent constantly updates to maintain
weights which have been determined to maximize cumulative returns in hindsight. Maximum
Likelihood Estimation was used to derive the BCRP weights [2]. 7

3.3 Results

Overall, we were able to achieve strong empirical performance with our strategy of Exponentiated
Gradient using a Mean Reversion expert, achieving returns very close to the BCRP benchmark
suggested by Cover and Thomas to be optimal in i.i.d. markets. [1] As mentioned before, we were
surprised to find that in our simulations, Helmbold’s original EG algorithm performed similarly
to the naive Buy and Hold benchmark. We conducted several subexperiments to further analyze
these findings.

3.3.1 Simulations Run

For our implementation of Helmbold’s original EG algorithm, we report results with a learning rate
η of 0.05, which is the same setting used in Helmbold [4]. However, after doing a grid search over
possible parameter settings, we found that returns in the presence of outliers was monotonically
increasing in the learning rate. We felt that this result was indicative of a potential shortcoming
in the EG algorithm in the sense that with high enough η, the algorithm was simply trying to
catch up to one or two ”winners” in the portfolio, rather than making incremental updates to its
allocation. Thus, we ran several subexperiments to better understand this behavior.

In total, we consider results from four different sets of trials:

1. Trading on all 28 stocks

2. Trading on a set of stocks that exclude the two best performing stocks over the time period
in question (AAPL and UNH, which we call outliers)8

3. Trading on the ten most volatile stocks, which were calculated in hindsight and included the
outliers AAPL and UNH

4. Trading on the top ten volatile stocks with AAPL and UNH excluded.

3.3.2 Findings

The EG Agent with the Mean Reversion Expert (EGMRE) achieved an annualized return of 23.8%
in our full 28-stock simulation, which approaches the returns of the Best Constant Rebalanced
Portfolio, which achieved 26.8% annualized returns over the same period. Dropping the hindsight
outliers of AAPL and UNH, EG with Mean Reversion was still able to achieve superior performance,
realizing an annualized return of 15.37%, virtually on par with the BCRP return of 15.43%.

7https://github.com/Marigold/universal-portfolios/blob/master/universal/algos/bcrp.py
8Over the given time period, AAPL and UNH returned 4.5x and 3x over the next best stock, MSFT.
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Table 1: Trading Strategies on All Stocks
Strategy: Wealth w/o Outliers APY APY w/o Outliers

Buy and Hold 6.21 3.68 10.91% 7.67%

Best Fixed Stock 45.41 10.98 24.15% 14.55%

Best CRP 66.01 12.62 26.77% 15.43%

EG - Dummy 6.18 4.53 10.89% 8.65%

EG - Momentum 4.31 1.54 8.54% 2.46%

EG - Mean Reversion 42.79 12.38 23.80% 15.37%

Table 2: Trading Strategies on the 10 Most Volatile Stocks
Strategy: Wealth w/o Outliers APY APY w/o Outliers

Buy and Hold 10.17 2.86 14.06% 6.14 %

Best Fixed Stock 10.98 10.98 14.55% 14.55%

Best CRP 66.01 7.48 26.77% 12.07%

EG - Dummy 9.38 3.69 13.53% 7.68%

EG - Momentum 3.44 0.55 7.27% -0.03%

EG - Mean Reversion 45.80 21.62 24.25% 19.06%

EG with Dummy experts achieved a final wealth of 6.18, which translates to an annualized
return, or annualized percentage yield (APY), of 10.89% on the full data set. Disappointingly, this
was only in line with the results achieved by a naive Buy and Hold strategy which achieves returns
of 10.91% over the simulation period. Furthermore, EG trailed the best CRP benchmark by a
large margin. This finding was persistent across the four simulations we tried; whether removing
high performing outliers or looking only at volatile stocks, EG was generally close to the Buy and
Hold benchmark. We would like to conduct further research to understand this divergence from
Helmbold’s original findings. We can hypothesize that it could be due to structural changes in the
financial markets, or a potential ”pricing in” of the EG strategy by the markets.

Finally, the EG Agent with the Momentum Expert performed the worst of all strategies, with
an annualized return of 8.54%, worse than any benchmark.

In simulations run without the extreme high-performing outliers of AAPL and UNH, all strate-
gies unsurprisingly perform worse; however, the relative rankings of strategies was mostly the same,
with the exception of EGMRE, which outperformed Best Fixed Stock with outliers removed.

3.4 Qualifications and Practical Considerations

While our simulation was run in an environment similar to those in the literature, it is worth
discussing some inherent limitations of the arrangement. The first arises from the notion of slippage,
which refers to any discrepancy between the price at which one anticipates executing a trade and
the price at which it is fulfilled. Slippage may occur due to latency (time difference between signals)
or the price impact of a trade (a large trade of an illiquid asset may actually drive the asset price).
Though the impact of slippage can be nontrivial, we found it to be beyond the scope of this project.9

9It is also worth noting that slippage is less likely to be significant in a mean reversion strategy, where positions
are counter to the prevailing price momentum.
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Wealth (Full, 28-Stock Action Space)

Figure 1: Our EG algorithm with a Mean Reversion expert achieves performance in line with the
BCRP and Best Fixed Stock benchmarks. Helmbold’s original EG is in line with the Buy and Hold
benchmark.

Wealth (Reduced Action Space Without Outlier Performers)

Figure 2: Even with strong performers removed, EG Mean Reversion keeps pace with the BCRP
benchmark. Helmbold’s original EG performs slightly above Buy and Hold in this setting.
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A second limitation is in commission or exchange costs associated with executing a trade. In
practice these costs vary greatly, so we do not attempt to include them in our simulation, but
suffice it to say that it would be an important consideration before any real-world implementation
of a trading strategy, and one which plagues other recent improvements on the EG algorithm. [3]

Interestingly, we did note a common behavior in our EG Mean Reversion simulations, whereby
positions in many equities would be closed out and held at 0 for several periods at a time—that
is to say, our portfolio allocation was often sparse. This is actually held as a desirable feature by
Das [3] and others for its ability to minimize transaction costs. We would like to conduct further
empirical research to understand the prevalence of this behavior in EG with Sophisticated Experts.
If it is a common outcome, it could be an important practical benefit of our algorithm.

4 Conclusions

We are pleased by the strong empirical performance of our EG algorithm using Mean Reversion
experts, and also interested in its potential to mitigate transaction costs, as this has been a challenge
for more recent EG-like models. At the same time, we would like to do further exploration to
understand why Helmbold’s original EG algorithm without sophisticated experts seems to have
broken down.

Overall, we find online portfolio allocation to be a rich problem space, and the possible exten-
sions to our work are many. To briefly mention a few avenues for further exposition:

• Changing market regimes: Singer’s ”Switching Portfolios” paper seeks to capitalize on chang-
ing market regimes by minimizing a shifting regret bound (a best dynamically rebalanced
portfolio, rather than a best CRP) [7].

• Side information: Helmbold et al. show that running EG with side information yielded even
greater returns than regular EG, a result which we did not have the chance to run on our
modern-day dataset. [4]

• Meta Optimization: Das and Banerjee show quite strong results feeding EG into a higher
meta-algorithm, but also raise the need to find sparse strategies to mitigate transaction costs.
[3]

• Online Variance Minimization: Warmuth and Kuzmin show interesting theoretical results
from a special case of EG designed to manage variance. They are able to prove bounds
on the variance incurred by EG relative to the best offline alternative. They point out the
usefulness of manging variance in the online portfolio allocation setting, but do not undertake
an empirical study. [8]
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