
Neural Machine Comprehension with BiLSTMs and Handcrafted Features

Kevin Wu
Columbia University
kjw2157@columbia.edu

Tze-Hsiang Wei
Columbia University
tw2623@columbia.edu

Sahil Manocha
Columbia University
sm4389@columbia.edu

Abstract

Since its creation 2016, the Stanford Question Answer-
ing Dataset (SQuAD) [4] has spawned the rapid develop-
ment of deep neural network models for reading compre-
hension. In this project, we build a deep learning system
for extractive question answering from the ground up. Us-
ing word embeddings and hand-crafted context features as
the inputs to a simple bidirectional LSTM, we are able to
achieve reasonably high accuracy with remarkably few pa-
rameters and model components.

1. Introduction

Neural question answering is one of the most promis-
ing areas of current deep learning research. From a ma-
chine learning perspective, question answering (QA) sys-
tems lie at the intersection of Natural Language Processing
and Information Retrieval. Solving the question answering
problem successfully would pave the way for a variety of
high-impact technologies, including autonomous customer
service agents that answer queries, email AI assistants, and
general CRM systems. In this paper, we deal with the ex-
tractive QA task, in which answers to a particular query are
fetched directly from the provided textual context.

Though complex attention-based models have achieved
state-of-the-art results on machine comprehension tasks, we
decided to start with the basic building blocks of a QA sys-
tem to find out what types of baseline accuracies could be
achieved with a simple bidirectional LSTM model without
attention. For our approach, we followed closely the ap-
proach of the FastQA model [8], with several ablations and
modifications.

2. Related Work

The release of SQuAD in 2016 has spurred the de-
velopment of neural machine comprehension systems of
ever-increasing accuracy and complexity. The current first
place on the public leaderboard for the challenge, a QANet
ensemble model jointly produced by Google Brain and

Carnegie Mellon [9], has achieved near-human performance
with an F1 score of 89.7 (compared to humans’ F1 score of
91.2). Many of the top-performing results on the SQuAD
leaderboard are the results of ensembled predictions, of-
ten of underlying base learners with different approaches to
the machine comprehension problem. We briefly highlight
some of the state-of-the-art architectures below:

• R-NET: Published by Microsoft Research in 2017,
R-NET uses a gated attention-based recurrent neural
network (based on LSTMs) to learn question-aware
passage representations, each of which is then “self-
matched” against a copy of itself to obtain an attention
mechanism over the passage [7]. For the output, the
authors use pointer networks to learn the probability
of answer spans in the context [6].

• BiDAF: Released in 2017 by the Allen Institute is
the Bi-Directional Attention Flow (BiDAF) model.
BiDAF contains two layers of LSTM recurrent units;
the top-most layer encodes the context and ques-
tion into a single embedding over which two lay-
ers of attention are passed (Context2Query and
Query2Context) [5]. The outputs from the attention
layers are then passed through another LSTM layer,
followed by the output layer.

• QANet: Published in 2018, Google Brain’s QANet
architecture discards recurrent architectures entirely,
using convolutional neural networks to learn lo-
cal question-context interactions and self-attention to
learn global patterns. [9]

While most state-of-the-art advances in machine com-
prehension consist of highly complex attention-based mod-
els, in our project we tried to see how much performance we
could obtain through a simple BiLSTM-based model with
word embeddings and a small number of hand-engineered
features. In doing so, we largely followed the example of
Weissenborn et al. in their 2017 paper “Making Neural QA
as Simple as Possible but not Simpler” [8]. In the paper, the
authors achieve a 78.9% F1 score on SQuAD using a re-
current neural network architecture without attention. The

1



architecture of this question answering model, known as
FastQA, is discussed in greater detail in Section 4.

3. SQuAD Challenge: Dataset and Evaluation

The Stanford Question Answering Dataset (SQuAD),
consists of 100,000 question-answer pairs on over 500 pas-
sages taken from Wikipedia.

3.1. Training Data

The training data contains 87,599 context-question-
answer pairs. An example of a particular question-context
pair is given below, with the ground truth answer under-
lined.

Question: Where is the headquarters
of the Congregation of the Holy Cross?
Context: The university is the major seat
of the Congregation of Holy Cross (albeit not its
official headquarters, which are in Rome). Its
main seminary, Moreau Seminary...

3.2. Testing Data

The testing data consists of 10,750 context-question
pairs, each with up to 3 unique ground truth answers from
the context passage.

Question: Which region of Cali-
fornia is Palm Springs located in?
Context: Many locals and tourists frequent the
southern California coast for its popular beaches,
and the desert city of Palm Springs is popular
for its resort feel and nearby open spaces.
Answers: “southern’ , “the desert”, “southern”

3.3. Evaluation Metrics

The SQuAD competition uses the following two metrics
for evaluating answers:

• Exact match: The percentage of predicted answers that
match exactly with any one of the ground truth an-
swers.

• F1: This is the average maximum F1 score between
the predicted answer and any of the ground truth an-
swers. In this case, precision and recall are both cal-
culated using a “bag-of-words” representation of both
predictions and ground truth answers. Casing, punctu-
ation, extra whitespaces, and articles (“a”, “an”, “the”)
are removed from the text snippets before calculating
F1.

4. Model
In this section we describe in mathematical detail the

different parts of our RNN model, highlighting any devi-
ations we made from the original FastQA paper. A high-
level overview of the architecture described below is shown
in Figure 1.

4.1. Embedding

Word embeddings have become an indispensable tech-
nique in most state-of-the-art deep NLP models. An alter-
native to one-hot token embeddings, learned word embed-
dings allow for a deep distributed representation of word
meaning in a low-dimensional space [2].

In the first step of our model, preprocessed and tokenized
text data was transformed into a sequence of d-dimensional
word embedding vectors. Call Xp an n × d dimensional
input matrix representing a sequence of word embeddings
corresponding to a passage of token length n, and Xq an
m × d input matrix representing a sequence of word em-
beddings corresponding to a question of token length m.

For this step, we used pretrained word vectors (see Sec-
tion 5.2 for details); out-of-vocabulary and zero-padding to-
kens were assigned a vector of 0.

4.2. “Word-in-Question” Features

In addition to the word embedding features, we augment
our input data with two additional “word-in-question” fea-
tures to assist our neural network model in matching ques-
tions to relevant text spans in the context. These features
were first introduced by Weissenborn et al. in the FastQA
model [8].

4.2.1 Binary “Word-in-Question”

For each context word xj , we define the binary word-in-
question feature, wiqbj to be 1 if the context word xj is
present in the question, and 0 otherwise. Formally, we have
the following:

wiqbj = 1(∃i : xj = qi) (1)

To ensure that all textual inputs have the same di-
mensionality, we define word-in-question features for each
question word qi as well, and we set wiqbi = 1 for all ques-
tion tokens qi.

4.2.2 Weighted “Word-in-Question”

Again following the technique and notation laid out in [8],
we next define a weighted word-in-question feature wiqwj
for each context word xj . To compute the weighted word-
in-question feature for a given context word xj , we measure

2



its similarity with each question word qi using an element-
wise multiplication of the word embeddings for qi and xj .
We then take the dot product of the multiplied embeddings
with a learned d-dimensional similarity vector vwiq .

simij = vwiq(xj � qi) (2)

wiqwj =
∑
i

softmax(simij) (3)

Just as the binary word-in-question features,
question inputs are assigned weighted word-in-
question features of 1 in order to ensure that
all textual inputs are of the same dimensionality.

After concatenating the two hand-engineered word-in-
question features to the word embedding representations,
we have X̃p, an n× (d+ 2) dimensional input matrix rep-
resenting the passage text, and X̃q, an m × (d + 2) input
matrix representing the question text.

4.3. Recurrent Unit Architecture

4.3.1 LSTM Cells

First published in 1997, the Long Short-Term Memory
(LSTM) cell has been one of the pioneering breakthroughs
in RNN architectures, providing a complex recurrent unit
that allows more efficient backpropagation of gradients
through time [1]. For a neural network made up of a se-
ries of recurrent LSTM cells, for each element in the in-
put sequence xt, the network calculates a hidden state st, a
candidate hidden state gt, and an internal memory ct. The
equations for an LSTM cell are as follows:

it = σ(xtW
i + st−1U

i)

ft = σ(xtW
f + st−1U

f )

ot = σ(xtW
o + st−1U

o)

gt = tanh(xtW
g + st−1U

g)

ct = ct−1 � ft + gt � it
st = tanh(ct)� ot

The LSTM cell consists of an input gate it, a forget gate
ft, and an output gate ot, each of which is the result of pass-
ing an affine transformation of the input and previous hid-
den state through a sigmoid nonlinearity. We also similarly
compute a candidate hidden state gt using a tanh activation
instead of a sigmoid.

Next we compute the cell state ct by passing the previous
cell state ct−1 through the forget gate ft, and then add in the
new candidate hidden state after passing it through the input
gate it.

The final hidden state st is the elementwise product be-
tween the cell state ct and the output gate ot.

4.3.2 Bidirectional Flow

To augment the amount of data available to the recurrent
neural network, we set up a bidirectional RNN architecture
in which information is passed both in the forward-time and
backward-time direction in two layers of LSTM cells (BiL-
STM). Context inputs and question inputs, (X̃p) and (X̃q),
are passed through the same recurrent layer (BiLSTM).

H′p = BiLSTM(X̃p)

H′q = BiLSTM(X̃q) (4)

The output of the two BiLSTMs are matrices corre-
sponding to the encoded context and question inputs, of size
2(d+ 2)× n and 2(d+ 2)×m, respectively.

4.4. Output Layers

Following the recurrent layer, the outputs from the BiL-
STMs are passed through a fully-connected layer with a
tanh activation.

Hp = tanh (BpH
′
p)

Hq = tanh (BqH
′
q) (5)

Bp and Bq are both matrices of size (d + 2) × 2(d +
2). Again following the example of Weissenborn et al.’s
FastQA model [8], we initialize Bp and Bq to be the con-
catenation of two identity matrices of size d+2, so initially,
Bp = Bq = [Id+2; Id+2].

Next, we compute a weighted sum of the projected ques-
tion representation, Hq, using as weights the outputs of a
softmax activation layer over the m column vectors of Hq,
hq1 , ..., hqm . We define the transformed question represen-
tation, h̃q , as:

α = softmax(vqHq) (6)

h̃q =
∑
i

αihqi (7)

This weighted sum h̃q , is interacted with each element
in the encoded and transformed context sequence in order
to calculate predicted start and end indices for the answer
span.

4.4.1 Start Index Network

To predict the start index, we use a feed-forward neural net-
work containing a single hidden layer with a ReLU activa-
tion. The input to this feed-forward neural network,Hs, is a
n×3dmatrix where each row hsj consists of a combination

3



of the projected context encoding for the jth element, hpj ,
and the weighted sum of the question encodings:

hsj = [hpj
; h̃q; h̃q � hpj

] (8)

We pass each of these concatenated context representa-
tions through a two layer feed-forward neural network.

sj = ReLU(Wsjhpj
) (9)

p(sj) = softmax(vsS)j (10)

The probability of a given location j in the context being
the start index of the answer span, p(sj), is computed by
taking the softmax over all sj .

4.4.2 End Index Network

Unlike in the FastQA paper, we compute the end index
probability distribution separately from the start index prob-
ability distribution; Weissenborn et al. compute a sepa-
rate conditional probability distribution over end indices,
p(e|sj) for each possible output index sj . To increase com-
putational efficiency, the authors also implement a beam
search within the network, only computing conditional
probabilities for the 5 most likely start indices.

To simplify our architecture, we compute the end index
probability distribution as a marginal distribution over end
indices, and instead implement a beam search architecture
at prediction time (see Section 5.4).

The architecture for the end index prediction network is
thus exactly the same as before.

hej = [hpj
; h̃q; h̃q � hpj

]

ej = ReLU(Wejhej )

p(ej) = softmax(veE)j

4.5. Loss Function

The objective function for the network is sum of the cross
entropy loss for the start index network and the end index
network. Given the ground truth start and end index loca-
tions, with n-dimensional one-hot representations ys and
ye, the loss function is defined as:

J(·) = −(
n∑

i=1

ysi log p(si) +

n∑
i=1

yei log p(ei)) (11)

5. Experimental Setup

In this section we describe in detail how we implemented
a neural comprehension system end-to-end, including the
preprocessing of the raw text data, the training of the RNN
model, and then the prediction of answer spans on the test
set.

We used the entire training dataset provided by the cre-
ators of SQuAD to train our model (train-v1.1.json),
and we used the accompanying development dataset
(dev-v1.1.json) as both our validation and test dataset.

5.1. Preprocessing

Keras’s Tokenizer class was used for processing the
raw text data; all characters were converted to lowercase,
and punctuation characters were stripped from the text. All
tokenized passage sequences were right (post) zero-padded
to a length of 700, and all tokenized question sequences
were zero-padded to a length of 50; both input lengths were
set to be greater than the maximum input length of the
longest passage and question in the training data.

In a later iteration of the experiment, the BiLSTM model
was modified to allow for different input lengths at train-
ing vs. test time. In particular, in FastQA and other im-
plementations, training passage lengths were truncated to
400 (ensuring that the answer span was within the truncated
sub-passage) and testing passage lengths were zero-padded
to 1000; however, we found that this preprocessing modi-
fication failed to yield a significant improvement in F1 or
exact match scores.

Ground truth answers in the training dataset were pro-
vided in the form of the index of the start character of the
answer span, and the total character length of the answer
span. These indices were converted into the start and end
indices of the corresponding token sequence for the pas-
sage, using the same tokenizer as the passage preprocessing
in order to ensure consistent input and output alignments.

5.2. Implementation

The code for the neural networks was written from
scratch using Keras (with Tensorflow backend). Models
were trained using an NVIDIA Tesla K80 GPU.

For the embedding layer, we used pretrained 300-
dimensional GloVe word vectors covering 840 billion to-
kens from the Common Crawl corpus [3].

In mapping the preprocessed texts to the pre-
trained GloVe embeddings, out-of-vocabulary words and
“padding“ tokens were mapped to a 300-dimensional zero
vector.

Concatenating the wiqb and wiqw features, to the word
embeddings resulted in an dimensionality of 302 for each
token, which we used as the number of hidden units in the
Bidirectional LSTM model as well.

4



Figure 1. High-level overview of the model architecture used for machine comprehension task.

5.3. Training

Adam optimization was used with an initial learning rate
of 10−3. The batch size was set to 64; this was consis-
tent with FastQA and other comparable methods, and we
found that in practice, trying batch sizes lower than 64 sim-
ply slowed down training without a noticeable improvement
in accuracy.

For regularization, we followed the example in the
FastQA paper of introducing dropout at the embedding
layer with p = 0.5. Dropout was applied column-wise
rather than element-wise; in other words, entire tokens were
dropped out during the training, rather than dropping out in-
dividual embedding elements in the tokens.

Prediction accuracies and losses on the validation dataset
for the start index and end index were evaluated after each
epoch. The Adam learning rate was halved every time the
validation loss failed to decrease after an epoch.

5.4. Prediction

The output from our RNN model consists of two proba-
bility distributions over the tokens of the context (padded to
length 700).

To predict the answer span from the context, we em-
ployed a beam search over start and end index distributions.
First we chose the top K most likely start indices; then for
each of the K start indices, sj , we take an argmax of the

end index probabilities for indices sj ≤ ej ≤ sj + L. The
final predicted answer span was chosen to be the start-end
index pair giving the highest joint probability, sj ∗ ej .

We found that at prediction time, using K = 10 and
L = 12 performed best; and that utilizing this beam search
technique instead of independently choosing and start and
end index yielded an improvement in F1 score of around
1-2 percentage points.

6. Results and Discussion
A comparison of our model’s performance on the

SQuAD dev dataset with existing baselines and the refer-
ence FastQA paper is provided in Table 1. The following
model results are used as a comparison:

• Logistic regression baseline: The logistic regression
baseline model described in the original SQuAD pa-
per uses a mix of categorical and continuous features
from questions and context spans, including unigram
and bigram frequencies, part-of-speech features, and
dependency parse tree structures [4].

• Neural BoW baseline: Weissenborn et al. [8] train a
feed-forward neural network which takes as input a
mix of word embeddings, binary and weighted word-
in-question features, and a speical “type matching”
feature that is dependent on the question word. This

5



Model F1 Exact Match

Logistic Regression baseline 51.0 40.0
Neural BoW baseline 56.2 43.8

BiLSTM + wiqb + wiqw 74.9 65.5
Our Model 64.6 50.6

Table 1. SQuAD Results on Dev dataset.

model considers all possible answer spans in the con-
text passage for the training data and minimizes cross-
entropy loss.

• BiLSTM + wiqb + wiqw: This is the FastQA imple-
mentation described in [8] without character embed-
dings and beam search.

As Table 1 shows, our model significantly outperforms
both a naive logistic regression baseline and the more so-
phisticated Neural Bag-of-Words baseline introduced in [8],
achieving a final F1 score of 64.6 and an exact match score
of 50.6 on the dev dataset. However, the results achieved
in our implementation are markedly different than the re-
sults reported in [8] with a comparable model (BiLSTM +
wiqb + wiqw). Having followed closely the model training
setup (i.e. optimization algorithm, learning rate, batch size,
learning rate schedule) described in the original paper, the
difference in results is most likely attributable to a different
method of text preprocessing, or a discrepancy in the actual
model architecture implemented.

7. Conclusion
Although falling short of state-of-the-art results for ma-

chine comprehension, in this work we demonstrate that at-
tention is not necessary in order to achieve good results.
A recurrent neural network based on bidirectional flows
through LSTM cells, using only word vectors and a small
number of hand-crafted features, can still outperform base-
line models by a large margin. Future work will focus on
refining these results, including matching the performance
achieved by Weissenborn et al. [8] on a comparable model,
and then adding in the additional components of FastQA,
including character embeddings, highway layers, and beam-
search.

References
[1] S. Hochreiter and J. Schmidhuber. Long short-term memory.

Neural Comput., 9(9):1735–1780, Nov. 1997.
[2] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient

estimation of word representations in vector space. CoRR,
abs/1301.3781, 2013.

[3] J. Pennington, R. Socher, and C. D. Manning. Glove: Global
vectors for word representation. In Empirical Methods in
Natural Language Processing (EMNLP), pages 1532–1543,
2014.

[4] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad: 100,
000+ questions for machine comprehension of text. CoRR,
abs/1606.05250, 2016.

[5] M. J. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi. Bidi-
rectional attention flow for machine comprehension. CoRR,
abs/1611.01603, 2016.

[6] O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks.
In Advances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Processing Sys-
tems 2015, December 7-12, 2015, Montreal, Quebec, Canada,
pages 2692–2700, 2015.

[7] W. Wang, N. Yang, F. Wei, B. Chang, and M. Zhou. Gated
self-matching networks for reading comprehension and ques-
tion answering. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics, ACL 2017,
Vancouver, Canada, July 30 - August 4, Volume 1: Long Pa-
pers, pages 189–198, 2017.

[8] D. Weissenborn, G. Wiese, and L. Seiffe. Fastqa: A sim-
ple and efficient neural architecture for question answering.
CoRR, abs/1703.04816, 2017.

[9] A. W. Yu, D. Dohan, M. Luong, R. Zhao, K. Chen,
M. Norouzi, and Q. V. Le. Qanet: Combining local convo-
lution with global self-attention for reading comprehension.
CoRR, abs/1804.09541, 2018.

6


