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ABSTRACT
The rising popularity of music streaming services has generated
an ever-increasing amount of data on musical tracks and listeners’
tastes. In particular, the 2018 RecSys Challenge features a newly-
released dataset by Spotify containing one million playlists created
by users of the online music streaming service. In this project,
we explore the use of autoencoder methods for learning a low-
dimensional representation of the playlist-song space, demonstrate
the robustness of autoencoder methods to data sparsity, and com-
pare the results achieved by autoencoders against a matrix factor-
ization baseline.

1 INTRODUCTION
The use of advanced recommendation systems is a field of machine
learning with wide-ranging applications for developing personal-
ized user experiences in domains such as advertising or entertain-
ment. Much of the research in the field of recommendation has fo-
cused on the use of unsupervised methods to learn low-dimensional
representations of users’ preferences over a set of items. In this
paper, we build on previous work applying unsupervised methods
from deep learning to recommendation, most notably the 2018 pa-
per "Variational autoencoders for collaborative filtering" by Dawen
Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara
[7]. We show that even on extremely sparse data, deep autoencoder
methods can provide superior performance as measured by recall
and normalized discounted cumulative gain (NDCG).

2 RELATEDWORK
In the framework of recommender systems, the underlying ob-
jective is to learn user preferences through implicit feedback, in
which users reveal their preferences not explicitly but through past
behavior (i.e. through clicks or views as opposed to ratings). By ag-
gregating implicit feedback across users, one may make inferences
on users’ preferences on unseen items, an approach known gen-
erally as collaborative filtering. Early approaches to collaborative
filtering leverage techniques such as singular value decomposition
(SVD), Latent Dirichlet Allocation (LDA), and probabilistic Latent
Semantic Analysis (pLSA) to learn a set of latent factors underlying
the observed data [1, 3, 4].

The recent resurgence of interest in deep neural networks has
led to the application of deep learning techniques to problems in the
recommendation literature. In one approach, a non-linear general-
ization of the matrix factorization (SVD) method for collaborative
filtering known as Neural Collaborative Filtering, user and item
feedback vectors are mapped onto latent embedding vectors which
are then passed through a multi-layer perceptron [2].

The other approach to neural-network based recommendation
makes use of autoencoders from the unsupervised learning do-
main. The Collaborative Denoising Autoencoder method uses the
denoising autoencoder method to learn latent representations, with
Gaussian and logistic log-likelihood functions as the objective func-
tion for the neural network [9]. Recent work has extended the use
of deep unsupervised methods to include both denoising and varia-
tional autoencoders, and demonstrated the superior performance
of autoencoders trained with multinomial log-likelihood objective
functions [7]. Our work closely follows that of Liang et al., extend-
ing their empirical evaluation to the newly-released Spotify playlist
dataset, and examining the robustness of autoencoder-based meth-
ods to highly sparse datasets.

3 METHODS
In this section, we briefly describe the machine learning meth-
ods used in this study, including denoising and variational auto-
encoders as well as the matrix factorization technique used as a
baseline for the recommendation task.

3.1 Autoencoders
Autoencoders are a broad class of neural networks used for unsuper-
vised learning of non-linear latent representations. In the context
of recommendation, given a set of N users andM items, the data
can be described as a matrix X ∈ {0, 1}N×M, where user i’s click
history is described by theM-dimensional binary row vector xi .

3.2 Denoising Autoencoders and Mult-DAE
The first type of autoencoder we will describe here is the denoising
autoencoder [8]. The denoising autoencoder (DAE) takes as input
a corrupted, or noisy, version of the original data. We call this
modified input X̃, with the corrupted version of user i’s click history
denoted as x̃i .

In the first step of the DAE, the input is passed through a feed-
forward neural network д with parameters ϕ (the encoder). The
output of this neural network is a matrix Z ∈ RN×K, where Z is a
low-dimensional representation of X with rank K .

zi = дϕ (x̃i ) (1)

Next, the latent representation Z is passed through a second feed-
forward network f parametrized by θ (the decoder). The output of
this second network is a matrix X′ in the original dimensions of
the input.

For the recommendation setting, Liang et al. [7] introduce an
additional softmax operation over the rows of X′, and the final
output of their generative model is a multinomial distribution πi
for each user i from which the user’s clicks are drawn.
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Figure 1: High-level overview of information flows through denoising (left) and variational autoencoders (right). Both Mult-
DAE and Mult-VAE, pictured above, take as input a vector of click histories and output a probability distribution over items.

πi, j ∝ exp(fθ (zi )j ) (2)

The encoder and decoder networks are trained in a single forward-
backward pass, using as the objective function the negative multi-
nomial log-likelihood for user i:

J (ϕ,θ ) = −
∑
i ∈ N

∑
j ∈M

xi, j logπi, j (3)

Liang et al. call such a denoising autoencoder trained using a
multinomial log-likelihood as Mult-DAE.

3.3 Variational Autoencoders and Mult-VAE
Since their original publication, variational autoencoders (VAEs)
have quickly gained popularity as away of learning a low-dimensional
and probabilistic latent space over data [6]. The key difference be-
tween the VAE setting and vanilla and denoising autoencoders is
that in the VAE setting, the latent representations zi are sampled
from some prior distribution, p(zi ). With this notation, the encoder
can be described as the posterior probability of zi given an obser-
vation xi , p(zi |xi ), while the decoder can be described as p(xi |zi ).
According to Bayes’ Rule, we can rewrite the posterior as

p(zi |xi ) =
p(xi |zi )p(zi )∫
p(xi |zi )p(zi )dzi

(4)

The integral, however, includes the decoder neural network p(xi |zi )
and is intractable.

To get around this, we approximate the posterior using qϕ (zi |xi ),
a distribution whose integral is tractable and whose parameters are
learned in the VAE.

With this new learned posterior qϕ , we can show that the likeli-
hood of the data over the original posterior pθ is lower bounded
by:

Eqϕ (z |xi )[logpθ (xi |zi )] − KL(qϕ (z |xi ) | | p(zi ))] (5)

Given this approximate posterior, the new objective for user
i is to maximize the lower bound of the log likelihood for xi , as
measured by the KL-divergence between qϕ (zi |xi ) and p(zi ).

J (ϕ,θ ) = −
∑
i ∈ N

∑
j ∈M

logpθ (xi |zi ) dϕ − βKL(qϕ (z |xi ) | | p(zi ))]

(6)

Just as in the DAE case, Liang et al. substitute multinomial log-
loss for the standard binomial or Gaussian log-likelihood function
in the last layer, which they refer to as Mult-VAE.

3.4 Collaborative Filtering (Baseline)
The baseline matrix factorization approach we use to generate
recommendations is as follows. Given a set of N users andM items,
and a binary click matrix R ∈ {0, 1}NxM , we approximate R as the
product of separate low-rank user and item matrices V ∈ RNxK

andW ∈ RMxK .
Given Ω, a set of (i, j) pairs indicating a “click” for user i and

item j, we minimize the reconstruction error between the true
click history and the reconstructed click history over Ω fromVWT .
Adding a regularization parameter on the user and item matrices,
we obtain the following loss function for matrix factorization:

min
V ,W

{ ∑
(i, j) ∈ Ω

[Ri, j − (VWT )i, j ]2 + λ(| |V | |2 + | |W | |2)
}

(7)

This objective function is non-convex in V andW and it’s min-
imum can be approximated using variants of stochastic gradient
descent.
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3.4.1 Alternating Least Squares. The Alternating Least Squares
(ALS) technique is built on the observation that holding eitherV or
W constant converts the above minimization problem into a Ridge
Regression. By alternating between solving forW and V holding
the other matrix constant, at each iteration we can calculate the
following closed-form solutions for vi and w j for all i, j as the
following:

vi = (WTW + λI )−1WT Ri ∀i (8)

w j = (VTV + λI )−1VT Rj ∀j (9)

The algorithm terminates upon the convergence of V andW
between iterations within some small ϵ .

4 EXPERIMENT: MILLION PLAYLIST
DATASET

4.1 Data
Released in January 2018, Spotify’s Million Playlist Dataset contains
one million playlists created by users of Spotify’s music streaming
service.1 For each playlist, the dataset contains the title as well
as a list of tracks and their order of appearance in the playlist.
Additionally, each track contains information such as song title,
artist name, album name, and duration.

1 {
2 "pos": 5,
3 "artist_name": "Guns N' Roses",
4 "track_uri": "spotify:track:7

o2CTH4ctstm8TNelqjb51",
5 "artist_uri": "spotify:artist:3

qm84nBOXUEQ2vnTfUTTFC",
6 "track_name": "Sweet Child O' Mine",
7 "album_uri": "spotify:album:3

I9Z1nDCL4E0cP62flcbI5",
8 "duration_ms": 356080,
9 "album_name": "Appetite For Destruction"
10 }

4.2 Preprocessing
The original dataset contains one million unique playlists spanning
2,262,292 unique tracks. Given the relatively low barrier to entry for
an artist to have their music uploaded to the platform, we wanted to
include only tracks in our recommendation system that are popular
to at least a certain degree. We also wanted to improve the quality
of our recommendations by reducing the sparsity of the dataset.

To accomplish this, we passed the dataset through a two-stage
preprocessing pipeline in which we first filtered out tracks appear-
ing in fewer than pmin playlists, and then filtered out playlists with
fewer than tmin tracks (from the remaining set of tracks).

We created two datasets in this way using different thresholds
for the track and playlist filters, which we call MPD-compact and
MPD-sparse. Details of the two datasets are given in Table 1, and
the parameters pmin and tmin used for them are given in Table 2.

1Million Playlist Dataset, official website hosted at
https://recsys-challenge.spotify.com/

MSD2 MPD-compact MPD-sparse MPD-all
# playlists 571,355 373,740 919,695 1,000,000
# tracks 41,140 69,675 190,897 2,262,292
# interactions 34M 39M 59M 66M
sparsity 0.143% 0.143% 0.034% .003%

Table 1: Million Playlists Datasets Comparison

MPD-compact MPD-sparse
pmin 100 25
tmin 50 10

Table 2: MPD-compact andMPD-sparse construction param-
eters

4.3 Train, Validation, Test Split
For both MPD-compact and MPD-sparse, we reserve 10,000 and
50,000 playlists respectively as validation and test sets. For each
validation and test set playlist, we then used 80% of the click history
as query data and the remaining 20% as “held-out” click data against
which we evaluate our predictions.

4.4 Implementation
Neural networks were implemented in Keras (for Mult-DAE) and
Tensorflow (for Mult-VAE), following the example in [7]. For Mult-
DAE no hidden layer was used; both encoder and decoder compo-
nents were single-layer perceptrons with a tanh non-linearity at
the latent encoding layer and a softmax non-linearity at the output
layer. The Mult-VAE architecture included a hidden layer of size
600 in both the encoder and decoder.3 For regularization, again
following the example of [7], dropout was applied at the input
layer with probability 0.5, and weight decay of 0.01 was used for
Mult-DAE. In Mult-VAE, the coefficient for the KL-divergence term
(β) was linearly annealed over the first 200,000 gradient updates.

For optimization, Adam [5] was used with a learning rate of 10−3
and a batch size of 500. Finally, models were trained on NVIDIA
Tesla K80 GPUs hosted on Google Cloud Platform.

4.5 Evaluation Metrics
After performing the training, validation, and test splits described in
the previous section, we evaluate the predictions from autoencoder
and collaborative filtering models on the ground truth answers
from the held-out clicks using the following two metrics.

4.5.1 Recall. Recall measures the fraction of relevant tracks, i.e.
tracks in the original held-out part of the playlist, that are retrieved
by a query to a model.

recall =
|{relevant tracks ∩ retrieved tracks}|

|{relevant tracks}| (10)

Specifically, we calculate recall@k where k indicates the maximum
number of top tracks considered for that playlist.

3For Mult-DAE, hidden layers of size 600 were introduced for the encoder and decoder,
but there was no resulting improvement from a deeper model.

https://recsys-challenge.spotify.com/
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Figure 2: NDCG@100 of Mult-DAE and Mult-VAE on valida-
tion data

4.5.2 NDCG. Normalized discounted cumulative gain measures
the degree to which highly relevant tracks appear earlier in the
playlist and less relevant — later.

NDGCk =
DCGk
IDCGk

(11)

where DCG for k top results (DCGk ) is

DCGk =
k∑
i=1

rel i
log2(i + 1)

(12)

with rel i being the relevance of the track at position i (in our case
rel is binary, i.e. rel ∈ {0, 1}) and logarithmic discount depending
on the position i , and where ideal DCGk (IDCGk ) is

IDCGk =
|RELk |∑
i=1

rel i
log2(i + 1)

(13)

with RELk being the list of at most k relevant tracks in their original
order in the playlist. Specifically, we use NDCG100 or NDGC@100.

5 RESULTS
In this sectionwe discuss the performance ofmultinomial-likelihood
autoencoder models on Spotify playlist data. Numerical perfor-
mance on MPD-compact and MPD-sparse datasets is shown in
Table 3 and Table 4, respectively. An example of an actual set of
playlist recommendations (generated using Mult-DAE on heldout
data from MPD-sparse) is shown in Figure 4.

5.1 Mult-DAE and Mult-VAE Performance
In our experiments on the Spotify playlist dataset, we compared the
performance of both Mult-DAE and Mult-VAE against a baseline,
unweighted matrix factorization model trained using Alternating
Least Squares. For the matrix factorization method, we used a low-
rank representation of rank 200, the same dimensionality as the
latent representation learned by Mult-DAE and Mult-VAE.

We find that for both versions of the Spotify dataset, Mult-DAE
outperformed matrix factorization by a large margin on nearly
all metrics. Following the example of [7], we display Recall@20,

Figure 3: Mult-VAE convergence on dense (top) and sparse
(bottom) datasets. Mult-VAE validation performance on the
sparse dataset follows a similar trajectory as validation per-
formance on the compact dataset.

Recall@50, and NDCG@100, but we note that this outperformance
was consistent across recall and NDCG for all top-N metrics. In
addition, we found that the performance of Mult-DAE and Mult-
VAE methods on MPD-compact was similar to the performance
reported by [7] on a dataset of comparable size and sparsity (the
Million Song Dataset).

As seen in figure 3Mult-VAEmodel performancewas slow to con-
verge on both datasets. On average, the models converged around
60 epochs. Due to resource constraints, Mult-VAE was trained for
only 30 epochs on the sparser dataset (on the dense dataset, each
epoch took approximately 7 minutes, while on the sparse dataset,
each epoch took nearly 60 minutes). For further work, we could
experiment with training Mult-VAE on MPD-sparse for longer time
periods (potentially using more compute power) to compare the
results with MPD-compact with similar epochs of training.

One difference to note between these results and those reported
in [7] however, is the ranking of autoencoder performance; in pre-
vious experiments, Mult-VAE had either performed the same as
Mult-DAE or better by a slight margin (< 1%). In our results, we
found that the denoising autoencoder yielded better results on the
validation and testing data. One possible reason for this result is
that we did not do enough hyperparameter tuning, and that given
further experiments on autoencoder depth and latent dimension
size, the two models might yield similar results.

5.2 MPD-Compact vs. MPD-Sparse
While initially we made use of a fairly aggressive filtering step to
generate a dataset of comparable size and sparsity as existing im-
plicit feedback datasets (specifically, Netflix, MovieLens-20M, and
MSD), the strong results on MPD-compact spurred us to try our
experiments on a sparser dataset that included more of the playlists
and tracks in the original Spotify dataset. We note that there are
two possible effects of this expanded dataset. The first possibility
is that the increased noise generated from highly infrequently oc-
curring tracks or small playlists would make it more difficult for
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Recall@20 Recall@50 NDCG@100

Mult-DAE 0.250 0.370 0.376
Mult-VAE 0.232 0.327 0.346
MF 0.141 0.233 0.232

Table 3: Performance on MPD-compact

Recall@20 Recall@50 NDCG@100

Mult-DAE 0.376 0.577 0.406
Mult-VAE 0.243 0.342 0.302
MF 0.202 0.347 0.235

Table 4: Performance on MPD-sparse

collaborative filtering methods to generalize the data into a lower-
dimensional space. The second is that by increasing the number
of users/playlists in the training data, the sparser dataset would in
fact improve out-of-sample performance.

In comparing Tables 3 and 4, we can see both of these effects
at work. Keeping the neural network architecture, hyperparame-
ters, and training constant, we can see that the best-performing
Mult-DAE model demonstrated significantly better results on test
users from MPD-sparse; in this case, the benefits of the increase
in training data seemed to outweigh the difficulties imposed by
sparser data.

The results were mixed for the other two models, however. Re-
call@20 and Recall@50 metrics showed a marginal improvement
for the Mult-VAE model when training and testing on the sparser
dataset, but the NDCG@100 decreased by several percentage points.
Matrix factorization showed a significant improvement in the top-
20 and top-50 metrics, but almost no improvement in NDCG@100.
In general, it seems that most of the benefit from the larger number
of playlists in MPD-sparse is distributed within the top-ranking
predictions, while the additional sparsity may be generating more
of an adverse effect for predictions below rank 50. Again, it is pos-
sible that the Mult-VAE model may see additional improvement on
MPD-sparse with further tuning of the hyperparameters and archi-
tecture, but the effect of increased sparsity on the three evaluation
metrics is fairly consistent across all three models.

6 CONCLUSION
Non-linear representations of user behavior using deep neural net-
works is a promising new direction in the field of collaborative
filtering. In this work, we demonstrate excellent performance of
autoencoder networks trained with multinomial log-likelihood on
Spotify playlist data from the 2018 RecSys Challenge. We compare
autoencoder methods with a matrix factorization baseline and show
the effect of sparsity on the model performance. In future work, we
would like to continue to experiment with different neural network
architectures, hyperparameters, and optimization strategies in or-
der to boost performance. We would also like to explore enriching
the implicit feedback dataset with metadata on users and tracks,
in order to tackle the cold-start problem faced in part of the 2018

Figure 4: Sample recommendations for a given playlist. Ac-
tual playlist tracks are shown above, followed by recom-
mended tracks from a Mult-DAE model. Recommendations
thatmatch upwith actual held-out tracks for the playlist are
denoted by a (*).

RecSys Challenge test set, and to improve the quality of playlist
continuation recommendations generated by autoencoder models.
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