
Don’t Stop the Music:
Playlist Continuation with Autoencoders

Kevin Wu, Vishal Anand, Kirill Sydykov

Columbia University
COMS 6998: Advanced Machine Learning

Final Project

04/30/2018

Introduction

Objective:

Compare the performance of classical collaborative filtering vs.
deep autoencoder-based approaches on a real-world
recommendation problem (playlist continuation).

Today’s Presentation:
Methods: Collaborative Filtering, Autoencoders
Experiment: 2018 Recsys Challenge
Findings and Discussion

User-Item Matrix Factorization

Given a set of N users and M items, and a binary click matrix
R ∈ {0, 1}NxM , we can approximate R as the product of separate
low-rank user and item matrices V ∈ RNxK and W ∈ RMxK . Given
an observed set of clicks Ω, the loss function is written as:

min
V ,W

{ ∑
(i , j)∈Ω

[Ri , j − (VW T)i , j]
2 + λ(||V ||2 + ||W ||2)

}
Alternating least-squares technique: two-step iterative process
that solves for V and W holding the other matrix constant.

Algorithm:

vi = (W TW + λI)−1W TMi ∀i
wj = (V TV + λI)−1V TMj ∀j

Iterate until convergence.

Autoencoders: Overview

An autoencoder uses a neural network to learn a non-linear latent
representation of the data.

Autoencoders, Part 1: Mult-DAE
(From Liang et al. 2018:)

In the general autoencoder and denoising autoencoder setting, we
first calculate a K -dimensional latent representation for each user
i , zi = gφ(xi), where gφ is a single or multi-layer perceptron with
one or more nonlinearities (encoder).

Users i ’s clicks are drawn according to a multinomial distribution
with probabilities π(zi) ∝ exp(fθ(zi)), where fθ is another neural
network (decoder).

To train this network, we seek to minimize the negative
multinomial log-likelihood for user i :

∑
j ∈ items

xi , j log π(zi)

Autoencoders, Part 2: Mult-VAE

Assume a generative model that for each user i , samples
K -dimensional latent representation zi with a Gaussian prior,
zi ∼ N (0, I).

In this setting, calculating the encoder, pθ(zi |xi) becomes
intractable (cannot take the integral over z in the evidence pθ(x)).

Instead we approximate the posterior using qφ(zi |xi) whose
parameters are learned in the VAE.

New objective is to maximize the lower bound of the log likelihood
for xi .

Eqφ(z|xi)[log pθ(xi |zi)]− KL(qφ(z |xi)||p(zi))]

Dataset: 2018 Recsys Challenge

Million Playlist Dataset (MPD) from Spotify:

I 1,000,000 user-generated playlists with titles
I Song metadata:

I Artist name, track name, album name
I Duration
I In-playlist position
I Spotify’s URI to access more metadata via their API

Preprocessing:
I Compact dataset (sparsity: 0.143%):

I Songs appearing in at least 100 playlists (69,675)
I Playlists with at least 50 songs (373,740)

I Sparse dataset (sparsity: 0.034%):
I Songs appearing in at least 25 playlists (190,897)
I Playlists with at least 10 songs (919,695)

Neural Network Architecture and Training

Model architecture:

I Mult-DAE: 200-dimensional latent representation layer,
dropout at input layer with, tanh nonlinearities, softmax
activation for output layer.

I Mult-VAE: Hidden layer of size 600 for encoder and decoder;
200-dimensional latent representation.

Experimental setup:

I Train/test split: 10K playlists reserved for validation and
testing for the autoencoder; 20% of click history in these
playlists were omitted during training as holdout clicks.

I Evaluation metric: NDCG@100 on validation data.

I Hardware: Nvidia Tesla K80 GPUs.

Results: Million Playlists Dataset

Deep autoencoder methods consistently outperform a matrix
factorization baseline.

Recall@20 Recall@50 NDCG@100

Mult-DAE 0.250 0.370 0.376
Mult-VAE 0.232 0.327 0.346
CF 0.141 0.233 0.232

Table 1: Performance on compact subset of MPD.

Results: Million Playlists Dataset

Autoencoder performance was robust to an increase in the sparsity
of the training data.

Recall@20 Recall@50 NDCG@100

Mult-DAE (1) 0.250 0.370 0.376
Mult-DAE (2) 0.376 0.577 0.406

Table 2: Mult-DAE performance on compact (1) and sparse (2) MPD.

The improvement in evaluation metrics may be attributed to the
larger N in the sparser dataset (920,000 vs. 370,000 playlists).

Example Recommendations

Deep latent representations of song preferences are able to
represent playlists with seemingly diverse tastes.

(*) denotes a recommended track that also appears in the held-out data for the
playlist.

References

Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony
Jebara. Variational Autoencoders for Collaborative Filtering.
arXiv:1802.05814 [cs, stat], February 2018.

	Today's Presentation:
	Methods: Collaborative Filtering, Autoencoders
	Experiment: 2018 Recsys Challenge
	Findings and Discussion

