“Q-Trading”: Learning to Scalp Using Order Book Features

Kevin J. Wu KJW2157QCOLUMBIA.EDU
Department of Computer Science
Columbia University, School of Engineering and Applied Sciences

Abstract

In this report, I explore the feasibility of using Q-learning to train a high-frequency trading
(HFT) agent that can capitalize on short-term price fluctuations, using only order book features
as inputs. I propose a specific functional form for the agent’s value function based on domain-
specific intuition and evaluate the performance of Q-learning trading algorithms by replaying
historical Bitcoin-USD exchange rate data through a “naive” market simulator.

1. Introduction

High-frequency trading of financial assets presents a rich set of challenges for reinforcement
learning. In the context of a financial exchange, a rational trading agent seeks to maxi-
mize cumulative profits (rewards) over a given time horizon, within a complex environment
whose underlying dynamics are unknown. Depending on the characteristics of the trading
algorithm’s decisions and the environment, each agent’s actions may have an affect not only
on his/her own future rewards but also on the future state of the market.

1.1 Trading Agent Overview

The goal of this project is to examine the viability of a trading agent that profits by
predicting short-term directional changes in price using only information contained in the
order book! and “scalping” accordingly — buying high and selling low. To simplify the
analysis and simulation, I restrict this agent to act as a market-taker, only placing market
orders and getting filled using whatever quantity is available at the top of the order book at
the time of the trade. Additionally, I assume that the agent’s actions do not directly cause
changes in the future state of the order book.?

Actions, however, do affect the future state of the environment by causing changes in
the agent’s net position. Since the objective of the agent will be to trade quickly back and
forth rather than accumulate to large positions, having a non-zero position will affect the
utility of a particular action; for example, an agent who is already long an asset will be
more incentivized to hold on to or sell their position at the next state, all else equal.

2. Related Work

Much of the existing academic work using reinforcement learning techniques on financial
market data focuses on longer-term price prediction problems, on the order of minutes or

1. See Appendix A for a more detailed description of the limit order book.
2. If the agent’s traded quantities are small relative to the available volume, this may not be an unrealistic
assumption

even days. Techniques from deep learning, particularly the use of recurrent neural networks
for modeling time series, have been applied at this time scale with some degree of success
(Y. Deng and Dai, 2017).

At the market microstructure level, applications of reinforcement learning are less com-
mon and have yielded mixed results. For trade execution problems, Kearns and Nevymyvaka
have successfully applied Q-learning algorithms to trade execution, where the goal is to min-
imize the market impact of a given trade (Nevmyvaka et al., 2006). For the task of price
prediction and alpha generation, Kearns and Nevymyvaka find that a Q-learning algorithm
using heterogeneous order book features is able to learn a momentum-based strategy? using
equities order book data (Kearns and Nevmyvaka, 2013).

While the overarching goal of this project is similar to the latter study, this project
explores the feasibility and interpretability of a hand-crafted Q-learning function approxi-
mator on order book data using a naive market playback environment. In addition, while
Kearns and Nevmyvaka have shown empirical limits to profitability of HFT strategies in
highly-liquid US equity markets (Kearns et al., 2010), this project aims to explore whether
reinforcement learning-based HFT strategies may have a competitive advantage in newer
and potentially less efficient electronic markets, such as cryptocurrencies.

3. Methods

In this section, I describe the HFT environment as a Markov Decision Process (MDP),
represented by the tuple (S, A, P, R, H,~), with state space S, action space A, transition
probabilities P, expected rewards R, time horizon H, and discount factor +.

3.1 Model-Free RL

Model-free RL methods seek to determine an optimal policy for an environment without
directly learning the underlying dynamics of the MDP. One of the earliest examples of a
model-free RL algorithm is Q-learning (Watkins and Dayan, 1992), which seeks to learn the
value of every state-action pair and acts greedily or e-greedily with respect to these values.
For every state-action pair (s,a), we define the optimal value function Q*(s, a) recursively
as:

Q*(s,a) = R(s,a) +~ Z P(s,a,s) maxQ*(s',a’)
s'eS “

When the number of possible states and actions is small, Q*(s,a) for all s,a can be
calculated directly using dynamic programming. For most real-world problems, however,
with a large (potentially infinite) number of possible states and/or actions, the value of a
state-action pair @Q(s,a) is approximated by a function Qg(s,a), whose parameters 6 are
learned using gradient descent.

3.2 “Q-Trading” Definitions

In this report, we consider the finite time horizon MDP setting, in which a trading agent
seeks to maximize a discounted total reward function over H time steps.

3. “Momentum” strategies aim to profit from continuing trends in price.

State representation: For a trading agent, the state space consists of both the set of
standing buy and sell orders represented by the limit order book and the agent’s current

inventory. At time ¢, an order book K levels deep consists of bid prices bgl), - bgK), ask
prices agl), ey agK), bid volumes ugl), s uEK), and ask volumes vgl), s vt(K). We denote

the midpoint price as p;, where p; = (bgl) + a%l)) /2. Finally, we use s; to denote the
agent’s position or inventory at time t.

Action space: Although in practice, an agent’s trading decision at time ¢t may be
described by any real-numbered value, I discretize possible actions to a finite set of integer
order amounts in order to simplify the action space.

Reward: Finally, the reward for the agent corresponds directly to the gains and losses
from trading. This includes both realized profits, computed on a first-in-first-out (FIFO)
basis, and unrealized profits at the end end of H time steps.

3.3 Function Approximation for Q-Trading

Many existing applications of reinforcement learning to financial market data make use of
deep neural networks (specifically RNNs) as function approximators. However, in a high-
frequency setting, a signal on future price direction may become stale in the time it takes
to complete a forward or backward pass through a deep neural network. In addition, with
limited data, deep neural networks are prone to overfitting. In this section, I walk through
the hypotheses and intuitions about the market used to develop a Q-function from the
ground up.

First, I hypothesize that the expected future midpoint price change, E[p;+1 — py, is a

(4) '

linear combination of the distances of bid and ask prices (b;’ and aiz)) from the current

midpoint price, where each order book quote is weighted by its respective volume (ugl) and

vt(l)).4 To account for the varying levels of overall trading activity at different times of day, I
normalize the volume at each price level by the total quantity available to trade at the first K
bid/ask levels. Initially then, we have E[ps1 —pi] = S0 | u,@ (bgl) —p)+ 3K, Uy) (agz) —Dt).
Since the influence of a particular price level on future moves may be dependent on its
position in the order book in addition to its volume, we can reweight the terms above using
a vector of coefficients 6, so that E[p;,1—p;] = 0Tx, where x = (ugl) (b,(:l) —Pt), e V,EI) (agl)—
Pt),...), plus a bias term.

Next, I note that the value of a particular expected price move is dependent on the
agent’s existing position s; and its chosen action a;; an agent that is currently holding
a long position will profit from opposite price moves compared to a similar agent that
is holding a short position. The expected reward of placing order a for an agent with
position s is therefore E[R] = (s + a) E[p+1 — p¢]. In practice, I found that passing this
product through a tanh non-linearity helped stabilize Q-learning updates against extreme
fluctuations in available volumes.

Finally, I add in an Ll-regularization on the agent’s position to the value function, to
discourage the agent from accumulating large positions. The resulting functional form for

4. This concept is sometimes referred to as “book pressure” in trading parlance.

the value at time ¢ of an action, given the agent’s current position s; and the state of the
order book z; is as follows.

Q(xt,s¢,a) = tanh[(a + s¢) - (07, x¢)] — A|sg + a| (1)

The above value function has the following desirable properties, all of which are grounded
in common sense and financial intuition: (1) It encodes the current state of the market using
volume-weighted bid and ask price deviations from the midpoint price, x¢; (2) it is linear
in x¢ given an action a; (3) the tanh term squashes the expected price movement between
-1 and 1 (predicting a general downward or upward directional movement); (4) and the
regularization term encodes the agent’s preference for short holding periods.

4. Experiments: BTC-USD Orderbook Data
4.1 Dataset

The dataset for this project comes from Level-2 orderbook data for US dollar-denominated
Bitcoin prices (BTC-USD) collected from the Global Digital Asset Exchange (GDAX)®.
The scraped data includes the top 20 bid and ask prices and volumes, and contains over
1.7 million timestamped order book snapshots spanning a period of 20 trading days from
04/11/2017 to 04/30/2017. See Appendix B for further details.

4.2 Simulation Environment

To simplify the scope of this project, I make a set of simplifying assumptions regarding
the interaction between trading agent and the market environment. First, I assume that
the trading agent only makes market orders, which execute at the best bid (if the agent’s
action is a sell order) and at the best ask otherwise. The agent is always either fully filled
at the top-of-book price, or filled up to the available volume at the best price. Future order
book updates are replayed as is. As mentioned in the introduction, this is a reasonable
simplification to make if the agent’s order quantities are small compared to the overall
volume available in the market.

4.3 Training

To train a Q-learning agent in an episodic MDP setting, I randomly sample episodes of
experience from the training dataset. Each episode contains 300 order book snapshots
(corresponding to a 5-minute long period in the order book history). For each set of hyper-
parameters, I train for a total of 1000 episodes, using an e-greedy policy with e = 1 for the
first 50 episodes and gradually annealed to a minimum level of 0.001. There was no use of
a target network; in other words, the same parameters were used to calculate Q-values for
the exploration policy and for the target values. The gradient of the TD-loss was used to
update the Q function after every 15 observations. I used a discount factor v = 0.8 and a
gradient update step size o = 0.0005.

5. Market data available at https://www.gdax.com/trade/BTC-USD

4.4 Baseline

For each set of actions A, the baseline agent takes a random action in A at the beginning
of the episode, and hold its position until the end of the episode. This can be thought of
as a “random buy/sell-and-hold” strategy with short holding periods (where each holding
period is exactly equal to the episode length for the Q-learning agent).

4.5 Results

I simulated the performance of Q-learning trading agents under several different environ-
ments. I tested two different action spaces, A5 and A;, where Ag = {—1,0,+1} (a small
action space where the agent may only choose to buy or sell the asset, or make no trade),
and A; = {—2,—1,0,+1, +2} (an expanded state space where an agent may choose to make
a large or a small order in either direction). I also try limiting the dimensionality of the
feature space to the top K best bids and asks, where K = 5, 10, and 20. Table 1 shows the
full set of results for two different values of regularization, A = 0.05 and A = 0.1. Figure
2 shows the evolution of the Q-learning agent under various settings of the environment
variables for A = 0.1.

Overall, the Q-learning agent did not consistently outperform the random baseline in
terms of average reward except for a few cases. Specifically, using K = 10 and A; resulted
in the best performance for multiple values of regularization; however, the standard error of
the final average reward statistic is relatively large, and we cannot say with certainty that
Q-learning does better than “break even” on its learned trading strategy.

However, though the Q-learning performance shows mixed success relative to the base-
line in terms of average final reward, in nearly all cases, the standard deviation of rewards
between episodes improved significantly from that of the baseline strategy.

4.6 Interpretability

Here, I look at the parameters and behavior of the learned trading agent and offer some
financial intuition for the results. In Figure 3, I show the coefficients on bid and ask state
variables for long and short positions, respectively. For the “bid states” (the price-volume
variables corresponding to bids in the order book), we see that the effect of price/volume in
the order book on the potential upward movement in price decreases deeper into the order
book. Similarly, for the “ask states,” we see that the effect of pressure in the order book
on the expected downward movement in price decreases deeper into the order book. This
confirms the initial intuition that one can predict price movements from book pressure on
the bid and ask. In addition, since our order book state representations already consist
of volume-adjusted price differentials, these coefficients indicate there is some additional
adjustment to the weighting necessary due to being a particular distance away from the top
of the order book.

Finally, Figure 4 shows the behavior of the trading agent at the end of the 1000 training
episodes. The uppermost time series shows the Q-values of the three available actions. We
can see that placing a buy or sell order (shown in the middle graph) causes a discontinuity
in the Q-values of the three actions. We can similarly align the changes in Q-values with
changes in the position of the agent due to a buy or sell order being placed.

5. Conclusion and Directions for Further Study

This work shows that model-free methods from reinforcement learning may be used to
generate modest returns from an aggressive scalping strategy with short holding periods.
Although without explicitly accounting for transaction costs, a Q-learning agent with this
particular functional form appears to offer only a slight improvement over baseline strategies,
it is important to note that there is still much more work to be done.

The first and most immediate next step would be to explore other, potentially more com-
plex function approximators for the Q-function. The current Q-function, best described as
a single-layer perceptron with a tanh non-linearity and regularization, offers easy inter-
pretability and fast gradient calculations, but it is limited to learning linear representations
of order book features. Other possible parameterizations of the Q-function with relatively
low calculation latencies include tree-based methods and support vector machines.

The next step would be to construct a more sophisticated and realistic market simulation
environment, modeling ways in which other traders and market participants might change
their behavior upon observing the actions of the machine learning agent. The dynamics of
this environment would be unknown to the Q-learning agent, and they would be based on
either a set of heuristics or models taken from empirical studies of HFT behavior.

Finally, periodic order book snapshots are an artificial view of the market microstruc-
ture environment; in a live market environment, state updates (or “ticks”) occur upon the
execution of any trade or any update to an existing order, at the frequency of milliseconds
and even microseconds. Replaying (and simulating) order book data at this scale poses an
additional engineering challenge, but by generating a more realistic simulation and training
environment, we can not only capture more potential trading signals, but also more closely
align back-testing and paper-trading results with actual performance in live trading.

References

Michael Kearns and Yuriy Nevmyvaka. Machine learning for market microstructure and
high frequency trading. 2013.

Michael Kearns, Alex Kulesza, and Yuriy Nevmyvaka. Empirical limitations on high fre-
quency trading profitability. 5, 09 2010.

Yuriy Nevmyvaka, Yi Feng, and Michael Kearns. Reinforcement learning for optimized trade
execution. Proceedings of the Twenty-Third International Conference (ICML 2006), pages
673-680, 01 2006.

C. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3):279-292, 1992.

Y. Kong Z. Ren Y. Deng, F. Bao and Q. Dai. Deep direct reinforcement learning for financial
signal representation and trading. IFEFE Transactions on Neural Networks and Learning
Systems, 28(3):653-664, 2017.

Appendix A: A Brief Glossary of Relevant Financial Terms

Electronic trading of most financial assets takes place via a continuous double-sided auction
in which buyers and sellers simultaneously submit their orders to a centralized exchange.
An interested party may submit two basic types of orders to an exchange: a market order,
which is immediately executed at the best available price, or a limit order, which is an order
to buy (sell) at or below (above) a specified price.

Limit orders which are not immediately executable because there is no matching coun-
terparty at the specified price are aggregated in the form of a limit order book, an example
of which is provided below in Figure 1. Orders to buy are known as bids and orders to sell
are known as asks (or offers). Market orders and executable limit orders will be matched
against the list of available quantities in the limit order book according to price-time priority.

The difference between best bid price and best ask price is called the bid-ask spread,
and the midpoint or mid price is the theoretical fair price, calculated as the average of the
best bid and ask prices.

U.0U U
0.00111906
0.00175854
0.00111887
0.00111888

332

4269177275

D

0.01106
0.001

0.17294
0.16122
0.18002

Figure 1: Snapshot of the limit order book for BTC-USD (Source: GDAX)

Appendix B: Data Collection and Preprocessing

Order book data used for the experiments in this project was collected by querying the
Global Digital Asset Exchange (GDAX) web API® for the Level 2 order book snapshot
at every second in time. Only the top 20 bids and ask prices, along with the volumes
and number of orders available at those levels, were kept. Due to slight latencies in the
API calls and responses, there were occasional lags or missing data points in the snapshot
time-series. Timestamps were rounded to the whole second and order book snapshots were
deduplicated on the time index, while missing snapshots were forward-filled with the last
available snapshot. Data points affected by this processing step represent less than 0.1% of
the total dataset.

6. https://docs.gdax.com/.

Appendix C: Q-Learning Performance

A=0.1 A=0.05
1 o s.e. (u) 1 o s.e. (u)

baseline | -0.01 16.18 - -0.01 16.18 -
A K=5 |]-025 1701 1.38 -1.32 13.13 0.92
"I K=10 | 0.43 10.58 0.85 2.03 15.88 1.40
K=20 | 039 10.59 0.62 0.83 16.45 0.86

baseline | 0.04 28.18 - 0.04 28.18 -
A K=5 |-129 1493 1.27 -0.66 13.90 1.11
K=10 | -0.71 14.33 1.03 -0.65 14.85 1.36
K=20|-1.08 14.35 1.29 0.12 11.51 0.77

Table 1: Final experiment results. For each training run, I take the average reward accu-
mulated in the last 20 episodes of the agent as the final reward. The mean (u) and
standard error (o) of this final reward value across 10 different agents (N = 10)
are displayed above. ¢ is the standard deviation of rewards accumulated in the

last 20 episodes of all training runs.

|Al =3 Al =5

50 50
0 0 - ——
-50 -50
-100 A ~100 1
v 150 A ~150 1
% 200 ~200 A
~250 - ~250 A
-300 - -300 A
-350 - -350 A
—400 1= —400 1+
50 50
0 01
-50 -50
-100 A -100 A
S -150 A -150 A
& ~200 ~200 -
—250 A ~250 1
-300 - -300 -
—350 A ~350 1
-400 1+ . : . . 400 1 . . ; ; ;
50 50
0 0 -
-50 -50
~100 A ~100 1
& -150 A -150 A
& —200 —200 A
—250 A —250 A
—300 - -300 A
—350 - -350 A
-400 1= . : ; ; ~ —400 1+ . : . : ;
0 200 400 600 800 1000 0 200 400 600 800 1000
episodes episodes
Figure 2: Final reward (as measured by a 20-episode moving average) obtained by Q-

learning agents under different settings of the state and action space, averaged
over 10 training runs. A = 0.1, v = 0.8 for these figures. The gray bars represent
one standard deviation from the average reward obtained at each episode.

Appendix D: Q-Learning Interpretation

Beta (Long)

Figure 3: Coefficients on bid variables for positive-valued (“long”) positions (left); coeffi-

Buy/Sall Order

Position

Figure 4: Q-values (top), actions (middle), and positions (bottom) of the agent over the

X
—-12 4
X X
—14 4
‘_‘\x“
T
X o Tl
X X TTe—l
_18.
X X
—20 X
b b b b b b . b b
%, zQ;) %, o, O Y Yo Yo % j‘y’o

x
12 4
10 4
£ 87 AN
o SS
& N
; 6 X Sso
2 x x X
4 Sso
X x
21 RN
0 1 X vy
%, %, % %%, %, %, %, O, %,
% Y % Y % Y% e Y % %

cients on ask variables or negative-valued (“short”) positions (right).

iRl
i

4—LH_|I|_III

T
0a87.5

last 20 episodes of a training run.

T
9a0.0
Episode

10

T T
0a2.5 Das.0 0a7.5

T
1000.0

	Introduction
	Trading Agent Overview

	Related Work
	Methods
	Model-Free RL
	``Q-Trading'' Definitions
	Function Approximation for Q-Trading

	Experiments: BTC-USD Orderbook Data
	Dataset
	Simulation Environment
	Training
	Baseline
	Results
	Interpretability

	Conclusion and Directions for Further Study

